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Solid Solutions 
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Quantitative size-factors have been calculated from the initial slopes of volume/ 
concentration plots for interstitial solid solutions, using data available in the literature. 
Solutions extending beyond 5 at.% are found to occur only in alloy systems for which the 
volume size-factor is less than 30 • 10-'. In order of relative importance, the factors which 
inhibit the formation of extensive solutions are: the electronic structure, the misfit strains 
and the elastic coefficients. These factors are discussed for the solutions based on BCC, 
FCC and HCP structures. 

1. Introduction 
When quantitative size-factors based on atomic 
volume were presented in an earlier volume of this 
journal [1 ], no reference was made to the solutes 
boron, carbon, hydrogen, nitrogen and oxygen. 
This omission was deliberate because, in contrast 
to the more usual substitutional solid solutions, 
these elements enter into metal solid solutions by 
occupying the interstices between the solvent 
atoms. Although the concentration of inter- 
stitial solute is often quite low, these solutes can 
have a marked effect on the physical and 
mechanical properties of the solvent metal, as 
discussed in some detail in a recent review by 
Goldschmidt [2]. 

Since the interstitial solutes do not replace the 
solvent atoms at the atomic sites of the crystal 
structure, the solid solution will become satur- 
ated at a fixed ratio of solute :metal atoms which 
must always be less than 1:0. Hence, a linear 
extrapolation of atomic volume plots to 100~ 
solute, does not have any physical significance 
for the interstitial solutions and an alternative 
approach must, therefore, be developed for 
defining quantitative size-factors. 

2. Definition of Size-Factors for 
Interstitial Solid Solutions 

Apart from a few solutions based on germanium, 
manganese or silicon, all other interstitial solid 
solutions are based on metals which have the 
BCC, FCC or HCP structure [3, 4], all of  which 
have two different types of interstice: one 
bounded by six solvent atoms at the corners of an 
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octahedron and the other by four solvent atoms 
located at the corners of a tetrahedron. 

In the BCC structure, the octahedral interstices 
are irregular, as shown in fig. la. The two nearest 
solvent atoms in this interstice lie closer to the 
centre of the solute atom than those which 
bound the regular tetrahedral interstice shown in 
fig. lb. Hence, if the solvent structure is con- 
sidered to remain undistorted, a larger solute 
atom can be accommodated in the tetrahedral 
interstice. 

The FCC interstices are illustrated in fig. 2. 
Both of these are regular in shape, the octahedral 
hole being the larger of the two. 

The shape of the interstices in the HCP 
structure depends on the axial ratio of the unit 
cell. If  the axial ratio is equal to the ideal value 
for the close-packing of hard spheres, 
(c/a = ~/g/,]'3 or 1.6330), these interstices 
become the same size and shape as those in the 
FCC structure, as shown in fig. 3. Since, how- 
ever, the ideal axial ratio is not observed in any 
of the pure metals [31, the interstices in the HCP 
solid solutions are distorted from regular 
octahedra or tetrahedra. Even so, the nature of 
this distortion is such that in both the inter- 
stices the solute atom remains equidistant from 
the surrounding solvent atoms. 

Crystallographic relationships for calculating 
the distance from the centre of an octahedral or 
tetrahedral interstice to the centre of the nearest 
solvent atom (i.e. So or S:r) are summarised in 
table I. The maximum radius of a spherical solute 
atom which can enter into a particular interstice 
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Figure 1 Intersti t ial holes in the BCC structure, (a) Octahedral  holes at face centres and cell edges. (b) Tet rahedra l  
holes on cell faces. 
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Figure 2 Interst i t ial  holes in the FCC structure, (a) Octahedral  holes at body centre and mid-points of cell edges. 
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the cell (~, ~, z,, ~, -~, 1 z,). (b) Tet rahedra l  Figure 3 Interst i t ial  holes in the HCP structure, (a) Octahedral  holes within , , . ,  = _ 
(~, ~, z~; ~, " ,  - holes a long cel l  edges (0, 0. -- z2; 0, 0, �89 d- z2) and within the cel l  2 , 1 z~). A s  drawn above for  ideal 

c/a, z, = �88 z z = ~. For general  values of  interatomic d istances and c learance holes see table I. 

1158 



Q U A N T I T A T I V E  S I Z E - F A C T O R S  F O R  I N T E R S T I T I A L  S O L I D  S O L U T I O N S  

TABLE I Some useful relationships for interstices in metal structures 

Parameter ECC FCC HCP HCP HCP 
_ _ ~ / 8  c V8 Ideal c c > __ 
a a ~/3 a < a/3 

~/3 ~/2 1 1 Ra a , - -  a . - -  
4 4 a . ~  a . ~  

a 3 +=(5" 
(0.433a) (0.3536a) (0.5a) (0.5a) (a/O,O833a 2 + 0.0625c2) - 

1 - , /2 1 ~ / 2  a a So a.~,  a .  -~  a . ~  a .  - - -~ ~J1 2- 3 ( ; )2  ~7_3J1 + 3 ( ; )2  

(0.5a) (0.707a) ( 0 . 5 a )  (0.707a) (X/0.3333a 2 + 0.0625c ~) (~,/0.3333a 2 + 0.0625c 2) 

/ 

R o (0.067a) (0.274a) (0.1464a) (0.207a) (S O - Ra) (S O - Ra) 

[?+-t:l ' ] 
~/3 a ( a  3 ; )  a ( ;  3 c )  

ST a .  ~/5~ a .--"/3 a .  ~/8-- -3 + 74 -3 + 4 a 

(0.559a) (0.433a) (0.6124a) (0.3333 a 2 + 0.25c) 0.333 + 0.25e 
C 

RT (0.126a) (0.0794a) (0.1124a) (Sz - Ra) (ST -- Ra) 

(0.211RA) (0.2248Ra) (0.2248Ra)[0.6666 a + 0 . 2 5 ; -  1] RA [ J 1  + 1.333 ( ; ) 2  1] Ra 

without distorting the solvent structure can thus 
be obtained by taking 

Ro = S o - R A o r R T =  S T -  RA (1) 

where Ra is the atomic radius of the solvent. The 
latter is conveniently derived from the lattice 
constants of the solvent structure, assuming that 
the atoms are hard spheres in contact with each 
other, again using relationships listed in table I. 
It should be noted in passing, that although this 
definition of atomic radius is inapplicable to 
solute atoms, which change their size when dis- 
solved in solvents of different valence or co- 
ordination [1, 5, 6], it is appropriate for the 
solvent atoms, because these remain in the same 
crystal structure. 

For practical purposes, it is convenient to 
express Ro or RT as a fraction of the solvent 
radius RA and the appropriate relationships are 
also included in table I. The use of the ratio 
Ro/RA or RT/RA allows the size of a particular 
interstice to be compared directly with the size- 
factor proposed by Higg [7], namely RI/RA, 
where RI is the radius of the interstitial atom 
derived from interatomic distances in its elemen- 
tal form. Like the Hume-Rothery size-factor for 
substitutional solid solutions, the Higg  size- 
factor has also been used as the basis of an 
empirical rule based on a study of the compounds 
formed by the transition metals and the elements 
boron, carbon, hydrogen and nitrogen. Higg  
observed that when the ratio RI/RA is less than 
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0.59, the intermetallic compounds  formed at 
composit ions A4I, A2I, AI  and AI~ can be 
expressed in terms of  a simple metallic structure 
(i.e. FCC,  H C P  etc.) with the metalloids occupy- 
ing the interstices. Since there are no metalloid: 
metalloid contacts, these compounds  have 
distinctly metallic properties, in contrast  to 
compounds  such as F%C which form in systems 
for which R~/RA is greater than 0.59. The ratio 
RI/RA should not  be taken as a measure of  the 
misfit strain, however, since it takes no account  
of  the possible change in the atomic size of  the 
solute, an effect which is often quite significant in 
these solutions [6]. 

Since quantitative size-factors have their 
application in understanding the properties of  
the s o l u t i o n - n o t  the s o l u t e - t h e y  may be 
defined f rom observed lattice parameters, with- 

out  involving the concept of  the effective size of  
the solute. Thus, using the sphere-in-the-hole- 
model, and following Darken and Gurry  [8] and 
Eshelby [9], the strain energy stored in a solvent 
matrix at a given fractional composit ion c is 
given by 

Es(c) = w163 " ~ c ]  f(c) (2) 

where F ands refer to the shear modulus  and the 
atomic volume of  the solvent matrix and f(c) is 
linear for low values of  c. A study of  the avail- 
able lattice parameter  data for interstitial solid 
solutions [3] shows that  the atomic volume varies 
linearly with atomic concentrat ion o f  solute up 
to a limiting composit ion which may be referred 
to as c~. The parameter  [1/s (?s which 
appears in the strain energy equation above, 

T A B L E II Size-factors for interstitial solid solutions--I BCC and complex cubic structures 

System t2A RA cs~ t2sf lsf c~ RI/RA 
(A) (/~) (at. %) (• 10') ( • 10') (at. %) 

BCC 
Cs-O 113.056 2.6375 ? (-k ve) (-k ve) - -  0.227 

~Fe-B 11.774 1.2411 < 0.02 ( -  re) ( -  ve) ? 0.733 
-C 0.11 (78.1) (21.2) 0.1 0.620 
-H 1.5 (9.7) (3.2) 1.5 0.371 
-N 0.4 (70.5) (19.5) 0.4 0.572 
-O < 0.03 ( -  re) ( -  ve) ? 0.483 

Mo-C 15.578 1.3625 0.15 (62.9) (17.7) 0.1 0.565 

Nb-C 17.972 1.5290 8 (24.1) (7.5) 0.3 0.539 
-H* --~ 50 20.3) 6.4 10 0.322 
-N 11.5 (22.2) (6.9) 0.3 0.497 
-O 9 25.5 7.9 4.8 0.420 

Ta-B 18.016 1.4302 2 (q- ve) (q- ve) ? 0.636 
-C 5 (12.8) (4.1) 0.1 0.538 
-H ,~ 50 19.1 6.0 28.5 0.322 
-N 12 40.7 12.1 4.8 0.496 
-O 6 43.0 12.6 3.6 0.420 

V-C 13.851 1.3102 8.7 (+  ve) (+  ve) ? 0.587 
-H ,-~ 50 (24.9) (7.68) 4 0.351 
-O ~ 4 79.5 21.5 3.2 0.458 

W-C 15.849 1.3704 0.3 (6.7) (1.3) 0.3 0.562 

Complex cubic 
Ge-O 22.482 1.222 60 0.2 0.1 56.9 0.490 

~Mn-C 12.212 1.12 8.5 (37.2) (11.1) 8.5 0.688 
-H ? (+  ve) (+  ve) - -  0.411 
-N 0.5 (34.2) (10.31) 0.5 0.634 

flMn-N 12.590 1.18 5 (6.1) (2.0) 5 0.602 

Si-B 20.01 1.175 3.6 -- 80.0 -- 21.6 3.6 0.774 
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may therefore be derived f rom the initial slopes 
o f  volume/concentrat ion plots and the atomic 
volume f2a o f  the solvent, to give a volume size- 
factor  for  the solution, defined as 

X2sf = ~__~ ~cc (3) 

A linear size-factor can be derived from X2 sf 
following the analysis given previously [5], i.e. 

ls f= (Osf + l) 1 / 3 -  I (4) 

The size-factors defined above are formally 
equivalent to those derived for  substitutional 
solutions [1 ] (even though  they do not  require a 
knowledge of  the effective size o f  the solute atom) 
and can be used in a quantitative manner  when 
analysing the effect o f  misfit strains on the 
physical, chemical or mechanical  properties o f  
interstitial solid solutions. 

3. Size-Factor Determinations 
Although interstitial pr imary solid solutions 
extending beyond 0.5 at. ~ solute have been 
reported for  some ninety binary alloy systems 
[4], it is disappointing to find that the composi-  
tional dependence o f  the lattice parameters has 
been measured in only fifty o f  these solutions. 
The alloy for which data are particularly lacking 
are those based on the rare earths, many  of  
which dissolve up to 50 at. ~ of  interstitial 
solutes at high temperatures. 

Using the data  collected by Pearson [3], size- 
factors have been calculated according to 
equations 3 and 4, the results being listed accord- 
ing to the crystal structure of  the solvent in 
tables I I  and III .  For  convenience o f  presenta- 
tion, the results have been scaled by a factor  10 ~. 
In  this form the numerical values in the tables 
can be compared  directly with those given 

T A B L E  I l l  Size-factors for interstitial solid solutions--II FCC and HCP structures 

S y s t e m  s'2a R a  cs at .Off l s f  c~ R~/R~ 
(A ~) (A) (at. ~ )  ( • 104) ( • 10') (at. %) 

FCC 
Ce-B 34.371 1.8250 ? ( -  ve) ( -  ve) - -  0.499 

- C  ~ 50 - 15.5 - 4 . 92  11.5 0 .421 

- H  ~ 50 (1.7)  (0.6) 16.6 0 . 2 5 2  

c~Co-C 11.109 1.2525 4.5 (+ ve) (+  ve) ? 0.615 
-N 3.8 (84.8) (22.7) 2.5 0.569 

Pd-H 14.728 1.3759 ~ 5 4.2 1.4 5 0.334 

Pt-H 15.104 1.3874 ~ 0.02 (-t- ve) (-Fve) ? 0.332 

Th-B 32.918 1.7989 ? ( -  ve) ( -  ve) - -  0.506 
-C* 15 50.0 14.7 2.5 0.428 

HCP 
c~Hf-B 22.317 1.5636 0.5 (§  ve) (+ ve) ? 0.582 

-N 29 10.5 3.4 29 0.454 
-O 21 5 6.2 2.0 21.5 0.384 

tMg-H 22.524 1.5826 ? (+  ve) (q- ve) - -  0.288 

Re-C 14.705 1.3699 11.7 (22.5) (7.0) 11.7 0.562 

Tc-B 14.297 1.3544 ~ 8.5 (q- ve) (+  ve) ? 0.672 
-C 7.7 (+  ve) (q- ve) ? 0.569 

c~Ti-B* 17.638 1.4469 ~ 33 10.8 3.5 18 0.629 
-C 2 48.2 14.0 1.6 0.532 
-H 8 (+ ve) (+  ve) ? 0.318 
-N 20 22.5 7.0 17 0.491 
-O* ~ 33 14.8 4.7 25 0.415 

c~Zr-B 23.356 1.5908 2 (§  ve) (§  ve) ? 0.573 
-H 6 (+ ve) (+  ve) ? 0.289 
-O* ~ 33 9.07 2.9 20 0.378 

tThis alloy also contains 10% AI, 0.2% Mn and 1.7~ Zn. 
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previously for the substitutional solid solutions 
[1]. The values listed within brackets refer to 
size-factors derived f rom the lattice parameters 
of supposedly saturated solid solutions, the 
compositions of which were not checked by 
chemical analysis [3], but estimated from phase 
diagram information [4]. These results are 
included to indicate the general trend of the 
volume changes in these alloy systems and thus 
should not be used in a quantitative manner to 
derive a volume for a particular alloy concentra- 
tion. 

The concentration limit to which appropriate 
size-factors may be applied for calculating lattice 
strains is indicated by cz in column 7 of tables 
I I  and III .  These concentrations are equivalent 
to those referred to as Cma,: for substitutional 
solutions [1], but the nomenclature has been 
changed to avoid possible confusion with Csat- 
the concentration of the saturated solid solution, 
which may not necessarily refer to room 
temperature. In most of the systems studied, c~ is 
considerably lower than cs~t. This can occur 
either because alloys have not been examined 
across the entire solid solution, or because the 
linear relationship between volume and compiso- 
tion only holds at low concentrations, so that the 
volume plots tend to flatten out beyond c~. The 
latter situation occurs in the systems marked with 
an asterisk, i.e. Nb-H,  Th-C, Ti-B, Ti-O and 
Zr-O and does not appear to be related to a 
particular type of solvent structure. For example, 
although it occurs in BCC Nb-H it is absent in 
Ta-H, and again while it occurs in HCP Ti-O 
andZr-O, itis absent in Hf-O. There also appears 
to be no direct relationship between the occur- 
rence of this effect and the magnitude of~2sf. 

Radius ratios, RI/RA, have also been calculated 
for the solutions under investigation and are 
included in column 8 of tables I and II. 

4. Discussion 
4.1. Negative Size-Factors 

A study of the size-factors listed in table II  and 
I I I  shows that a number of them are negative, 
indicating that a decrease in volume occurs on 
alloying. This was unexpected, since one would 
expect that in general the solute atoms would be 
too large to fit into the available interstices of the 
solvent structure and hence any lattice distortion 
would take the form of an expansion rather than 
a contraction. 

The negative size-factors for aFe-O and Th-B 
should not ' be  taken too seriously, perhaps, 
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because in both cases they are based on single 
alloys of  unknown chemical composition, whose 
lattice parameters in any event lie within the 
scatter of the experimental values for the pure 
solvents [3 ]. The solution of boron in silicon, on 
the other hand, is considered to be substitutional 
in nature and the same conclusion has been drawn 
for ctFe-B, on the basis of internal friction 
measurements [2-4]. 

This leaves Ce-C as the only unquestionable 
instance of a negative lattice distortion, in an 
interstitial solution which extends up to 
11.5 at. ~ .  Since cerium has the largest atomic 
volume of the FCC solvents in table III ,  the 
possibility exists that the carbon atoms enter the 
solution without expanding the lattice. The 
minimum atomic volumes of solvents at which 
the five interstitial solutes can enter the various 
interstices without distorting the solvent structure 
are listed in table IV. These values are more 

TABLE IV Atomic volumes (A 3) of solvents at which 
Ro or RT = Ri 

Solute RI BCC FCC and HCP 
(/~) I2 o -~f2 o' t2T (ideal) 

t2o t?T 

B 0.91 1250 18.3 188 63.1 375 
C 0.77 758 11.1 114 38.3 227 
N 0.71 536 8.7 89.2 29.9 178 
O 0.60 360 5.2 53.9 18.1 108 
H 0.46 162 2.4 24.3 8.1 48.5 

tO0' = Volume at which R~ equals the larger clearance 
distance in the irregular octahedral hole of the BCC 
structure (see fig. 1). 

convenient than the limiting values of the radius 
ratio RI/RA, since the atomic volumes of the 
elements are listed in standard tables. I t  is 
readily apparent from table IV that cerium, with 
an atomic volume of 34.37 A3 lies just below the 
limiting value for the solution of carbon in the 
octahedral interstices of the FCC structure. The 
solution would thus be expected to show a very 
small increase in atomic volume with carbon 
concentration. I t  is also known, however, that 
cerium can exist in two FCC forms, one of which 
has a 1 6 ~  smaller atomic volume, which is 
associated with the transfer of electrons from the 
outer 6s band to the inner 4f band [3, 4]. This 
observation is a particular manifestation of the 
general contraction which occurs as the 4f band 
is progressively filled across the lanthanide series 
of elements [10]. Hence, if the valence electrons 
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Figure 4 Solvents  which form extensive interst i t ia l  so lu t ions indicated on plots of  compress ib i l i ty  versus sub-group 
number, for  d i f ferent  per iods of  the per iodic table. 

of carbon enter the 4f band of cerium, a similar 
volume contraction would be expected across the 
Ce-C solid solution, which would account for the 
negative size-factor in table III. 

4.2. The Effect of Size-Factors on Solubi l i ty 
Limits 

The significance of the electronic structure and 
the elastic properties of the solvent on the forma- 
tion of extensive interstitial solid solutions is 
illustrated in fig. 4, where the solvents which 
form solutions beyond 1 at. ~ are indicated on 
plots of compressibility versus sub-group number 
for different periods of the periodic table [10]. 
It is readily apparent that, in spite of their 
relatively high compressibilities, none of the 
elements from group IA or from any of the 
B-sub-groups form extensive solid solutions, 
while the elements Ba and Sr from group IIA 
only form extensive solutions with hydrogen. 
This pattern of behaviour can be attributed to 
the general tendency of these elements to form 
ionic or covalent compounds when alloyed with 
the metalloids [3, 4]. The rare earths and the 

transition metals, on the other hand, can retain 
their essentially metallic character by absorbing 
the valence electrons from the solutes into their 
unfilled f- or d- bands [2], as mentioned above for 
Ce-C. Granted that the electronic factors limit 
the formation of extensive interstitial solid 
solutions to the latter series of elements, it is 
important to notice, by comparing the data in 
tables II and III, that the rare earths and the 
group IVA metals Ti, Zr and Hf  show a greater 
tendency to form extensive solid solutions than 
the remaining transition metals, which have 
significantly lower compressibilities. Hence, after 
the basic electronic condition has been satisfied, 
the solubility limit is governed by the elastic 
properties of the solvent matrix. 

When the size-factors in tables II and II[ are 
compared with the solubility limits c~, beyond 
which the volume changes are no longer linear 
with composition, it is found that values of ct 
greater than 5 at. ~ only occur when E2sfis less 
than 3 0 ~  (lsf< 10~),  regardless of the 
structure of the solvent. This limit on the size- 
factor is precisely the same as that observed 
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previously for tbe substitutional solid solutions 
[1, 10] and lies well within the theoretical limit 
derived from calculations based on the sphere- 
in-the-hole model [5, 8, 9]. In this connection, 
it is also of interest to note that the size-factors 
for interstitial solutions are of much the same 
order of magnitude as those for substitutional 
solutions, which again confirms that the upper 
limit of the lattice distortion is governed by the 
elastic properties of the solvent matrix. 

When the size-factors are compared with csat, 
the solute concentration at saturation, however, 
there is no definite cut-off when the volume size- 
factor rises above 30 ~ .  In the system Th-C, for 
example, f2sf = 50 ~ ,  yet Csat extends to 15 at. ~ .  
This discrepancy occurs because the volume/ 
concentration plot is not linear across the entire 
solid solution. Hence, the s value of 50 ~ is 
indicative of a high initial rate of lattice distor- 
tion at concentrations up to cl(= 2.5 at. ~ C), 
beyond which the rate of distortion falls to a 
lower, steadier value. Using the latter slope, the 
Dsffor  this alloy system for the range of composi- 
tion from 10 to 15 at. ~o C is found to be 21.4, 
i.e. well within the 30 ~ limit referred to above. 
A similar fall in size-factor beyond c, also occurs 
in the systems Nb-H, Ti-B, Ti-O and Zr-O. 

A further reason for an apparent discrepancy 
between Csat and the 30 % limit of the volume 
size-factor, is that many of the solubility limits 
refer to high temperatures, at which a higher 
degree of lattice distortion can be tolerated due 
to softening of the elastic constants of the solvent. 
In Ta-N and Ta-O, for example, Csat extends 
beyond 5 at. ~ ,  yet the f2sf values are greater 
than 40~o. The csa~ values quoted in table II for 
these alloy systems refer to temperatures above 
1600~ however, but the equivalent room 
temperature values are less than 1 at. ~ [4] and 
thus conform to the empirical rule established 
above. 

4.3. The Influence of Solvent  Structure 
The limited number of size-factor values 
presented in tables II and III makes it difficult to 
assess whether or not the relative magnitude of 
E2sf is related to the crystal structure of the 
solvent. The complex cubic solutions, for 
example, show the same spread in ff2sf values as 
the FCC and BCC solutions and hence the only 
indication of any kind of pattern is that the high- 
est value of~2sffor the HCP solutions ( ~  50 x 
10 .4 ) is significantly lower than the maximum 
values ( ~  80 x 10 -4) for the cubic solutions. 
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4.3.1. BCC solutions 
The largest number of ff2sf values for a given 
solvent structure occurs for the BCC solutions. 
This is somewhat surprising since (as may be 
seen from tables II and IV) none of the BCC 
solvents apart from Ce has a large enough 
atomic volume to accommodate even hydrogen 
without some lattice distortion. Nevertheless, 
solutions extending up to 50 at. ~ do occur for 
BCC solvents, but only when hydrogen is the 
solute. Solutions greater than 5 at. ~o occur when 
carbon, nitrogen or oxygen are dissolved in the 
VA solvents V, Nb and Ta, but only at high 
temperatures. Hence the cz limits for these 
solutions, which are based on room temperature 
lattice parameter data, do not exceed 5 at. ~ .  
Higher values occur for Nb-H and Ta-H, for 
which the atomic volumes of ~ 18 ,~3 lie just 
below the $2~ for hydrogen (table IV). 

It is interesting to note that BCC ~-Fe, with an 
atomic volume of 11.774ik z lies well below any of 
the Or  limits given for the solutes in table IV, yet 
this phase dissolves a measurable concentration 
of all of the interstitial solutes. Evidence from 
internal friction, etc [2], indicates that while 
boron enters c~-Fe substitutionally the remaining 
solutes occupy the smaller irregular octahedral 
interstices (fig. 1), by displacing only the two 
nearest solvent atoms. Providing the concentra- 
tion is low and the sites are occupied at random, 
the net effect of these displacements is an overall 
increase in atomic volume. If  the sites are 
occupied by a limited number of solute atoms 
but in an ordered fashion, as in a'martensite [2], 
the structure distorts uniformly to BCT. This 
proposal is confirmed by the data in table IV, 
which show that the various values of ~o '  
(except for boron) all lie below the atomic 
volume of a-Fe and hence the solutes can enter 
the octahedral interstices without displacing, or 
even making contact with, the four second 
nearest solvent atoms. The limiting radius ratio 
for this situation is given by Ro'/RA = 0.633, as 
indicated in table I. 

When the solubility limits, Csat, of  the BCC 
solutions are plotted as a function of the radius 
ratio, RI/RA, as shown in fig. 5, it is found that 
all the extensive solutions apart from a few 
containing boron, occur in systems for which 
RI/RA is less than 0.633. It is interesting to note 
that this radius ratio is close to the limiting value 
of 0.59 proposed by H~igg for intermediate 
compounds with simple metallic structures, even 

"though he was unable to find a truly BCC 
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Figure 5 Limits of saturated solid solution, C s a t ,  plotted 
against the radius ratio R=/RA for BCC interstitial solu- 
tions. 

compound which conformed to his rule [7]. A 
closer study of fig. 4 indicates that hydrogen, and 
to a lesser extent oxygen, can be accommodated 
in the regular tetrahedral interstices provided the 
solvent matrix is reasonably soft elastically. The 
occupancy of the irregular octahedral sites be- 
comes more pressing in solutions containing 
nitrogen and carbon, however, particularly for 
the small atomic volume solvents from the first 
long period of the periodic table, most of which 
have RI/R~ values between 0.5 and 0.6. 

4.3.2. FCC and HCP solutions 
When the atomic volumes of the FCC solvents in 
table IIl[ are compared with the [2o limits in 
table IV it is not surprising to find that extensive 
solutions only occur for carbon and hydrogen 
dissolved in cerium and for carbon in thorium. 
The HCP solvents, on the other hand, form 
extensive solutions with both carbon and 
nitrogen, even though their atomic volumes lie 

considerably below the E2o limits for these 
solutes in table IV. Since the latter limits are only 
applicable to ideally close-packed HCP solvents, 
it follows that the axial ratio of the solvent must 
play an important role, along with the atomic 
volume, in determining the solubility limits of 
these interstitial solutions. 
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Figure 6 Limits of saturated solid solution, c~t, plotted 
against the radius ratio Rj/R A for FCC and HCP inter- 
stitial solutions. 

To examine the difference between the FCC 
and HCP solutions in more detail, values of 
csat, taken from the literature [4], are plotted 
against the radius ratio, Rz/Ra, in fig. 6. The 
radius ratios for the HCP solutions are calcu- 
lated using the expressions given in table I and 
thus take account of the particular c/a of the 
solvent metal. It is immediately apparent from 
this plot that H/igg's radius ratio limit of 0.59 is 
convincingly demonstrated to be applicable to 
both the FCC and HCP solutions. It is alse 
noticeable that, with the exception of Cu-B 
(which is probably a substitutional solution), 
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there is a distinct lack of interstitial solutions 
based on the IB FCC metals, Cu, Ag and Au, 
even though their atomic volumes (15 to 18/k s) 
lie within the [2o limit for hydrogen, and close to 
that of oxygen. This absence is all the more 
surprising in view of the tendency of these metals 
to' form extensive substitutional solutions, often 
with considerable lattice distortion [3], with the 
other B-sub-group elements as solutes [4]. As 
mentioned above, the general lack of interstitial 
solutions based on the B-sub-group metals is 
attributed to the absence of an incomplete inner 
electronic band in these metals. 

The radius ratios for the hydrogen solutions in 
fig. 6 are low enough to permit the solute atoms 
to be accommodated in the smaller tetrahedral 
interstices. This is confirmed by the structure of 
the hydrides of the transition metals and the rare 
earths, most of which have the C1CaF~structure, 
in which the metal atoms lie at FCC positions 
and the solute atoms occupy the tetrahedral 
interstices [2, 3]. The equivalent oxide, nitride 
and carbide compounds of these elements have 
the B1 NaC1 structure, or the hexagonal W~C 
structure, in both of which the solute atoms 
occupy the octahedral interstices [2, 3, 7]. The 
radius ratio values of the solutions in fig. 6 
indicate that oxygen, nitrogen and carbon also 
occupy the octahedral interstices when entering 
the FCC or HCP solid solutions. 

It is also apparent from fig. 6, that only HCP 
solvents form extensive solutions with oxygen, 
but this may reflect a lack of study of the FCC 
solutions, rather than a general trend. Although 
FCC solutions occur with nitrogen as solute, 
they have significantly lower cs~t values than the 
HCP solutions, even though in the case of Ca and 
Th they have more favomable radius ratios. 
Apar t  from Ce and Th, all solutions containing 
carbon involve a considerable distortion of the 
octahedral interstices. There appears to be no 
clear distinction between the csat limits of these 
FCC and HCP solutions, but the situation is 
confused because the FCC solutions can exist at 
higher temperatures than the HCP solutions, 
because of the HCP ~-BCC allotropic change 
which occurs in Ti, Zr and Hf. There is a general 
trend, nevertheless, that the HCP solvents tend 
to form more extensive solutions than FCC 
solvents of equivalent atomic volume. 

The difference between the FCC and HCP 
structure arises because the co-ordination of the 
latter changes from 12 to 6,6 when the axial 
ratio deviates from the ideal value for close- 
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packing. A study of the geometry of the HCP 
interstices shows that, no matter whether the 
deviation in axial ratio increases the separation 
of the atoms in the basal planes or the pyramidal 
planes, the radius of the clearance hole for both 
the octahedral and tetrahedral interstices (i.e. 
Ro or RT) is thereby increased. This is demon- 
strated in table V, in which the values of Ro/RA 
and RT/RA have been calculated for some typical 
HCP metals. It is of interest to note, in passing, 
that although the interstices in Zn and Cd are 
considerably enlarged due to their high axial 
ratios, neither of these B-sub-group metals 
forms an extensive interstitial solution. It is also 
evident from table V that the solvents Ti, Zr and 
Hf, which have axial ratios well below the ideal 
value, thus have significantly larger clearance 
holes than an FCC solvent of the same atomic 
volume. 

On the basis of misfit strains alone, it is to be 
expected that the axial ratio should deviate 
progressively from the ideal value across an HCP 
solid solution. In practice, however, this trend is 
only observed in solutions based on the VIIA 
solvents Tc and Re. The extensive solutions 
based on the IVA solvents Ti, Zr and Hf  show 
just the opposite trend, i.e. a change in c/a 
towards the ideal value. The axial ratio of an 
HCP metal is, however, governed primarily by 
the electronic band structure. Hence on adding a 
solute, the influence on the band structure must 
be considered, along with the effect of misfit 
strains, in altering the overall energy of the alloy. 
If the band structure contribution to the energy 
demands a change of axial ratio towards the 
ideal value on alloying with a particular solute, 
this axial ratio change can only occur if the 
elastic constants of the alloy are sufficiently soft 
to allow an overall increase in volume which 
more than off-sets the decrease in the size of the 
interstices due to the change in axial ratio. This 
situation appears to hold for the group IVA 
metals as shown by the c/a and Ro/RA values for 
the saturated solid solutions listed in table V. 
These metals also have a relatively high compress- 
ibility, as indicated by the data plotted in fig. 4. 
If, on the other hand, the solvent is relatively 
incompressible, as in the case for Tc and Re 
(see fig. 4), then, if the atomic volumes are not 
too favourable, interstitial solutions can only 
occur if the misfit strains are accommodated by a 
progressive deviation away from the ideal axial 
ratio. 

On the basis of the above discussion, the factor 
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T A B L E  V The effect of axial ratio on the interstices in HCP metals and alloys 

Metal solvent e/a Ro/RA RT/RA Saturated solution e/a Ro/RA RT/RA 

Be 1.5684 0.432 0.242 - -  - -  - -  -4- 
Hf 1.5817 0.429 0.238 Hf-B 1.5886 0.436 0.~44 

-N 1.6010 0.446 0.253 
-O 1.5857 0.440 0.2#7 

Ti 1.5857 0.428 0.237 Ti-B 1.6107 0.446 0.252 ~' 
-C 1.5914 0.432 0.240 " 
-H 1.6062 0.434 0.242 
-N 1.6103 0.446 0.252 
-O 1.6364 0.447 0.253 

Zr 1.5917 0.426 0.235 Zr-B 1.5957 0.435 0.243 
-H 1.5928 0.427 0.236 
-O 1.6001 0.434 0.242 

Tc 1.6051 0.422 0.232 Tc-B 1.6028 0.426 0.235 
-C 1.5838 0.454 0.259 

Re 1.6152 0.419 0.229 Re-C 1.6014 0.432 0.240 

tMg 1.6259 0.416 0.226 tMg-H 1.6263 0.419 0.229 

IDEAL 1.6330 0.414 0 . 2 2 5  . . . .  

Zn 1.8549 0.481 0 . 2 8 7  . . . .  

Cd 1.886 0.491 0 . 2 9 6  . . . .  

tThis alloy also contains 10~ A1, 0.2~ Mn and 1.7Yo Zn. 
Notes: (1) For solvents, Ro/RA and RT/RA are calculated using the expressions given within square-brackets in 

table I. 
(2) For solutions, Re and RT are derived by subtracting R•, for the solvent, from So and Sz using the expressions 

given with the curved brackets in table I. 

influencing interstitial solid solutions may be 
listed in an order &pr ior i ty ,  viz. 
(1) Electronic factors are pr imary and can 
el iminate complete sub-groups of possible 
solvents. 
(2) Size-factors, as determined by volumes and 
(where necessary) by axial ratios, are secondary, 
coming into effect only when electronic condi- 
t ions are satisfied. Extensive solutions only occur 
when f2sfis less than 30 • 10 -4. 
(3) Elastic coefficients of the solvent are tertiary, 
only becoming operative when both  electronic 
and  size-factor condit ions are satisfied. The 
elastic properties govern the extent of the solu- 
t ion rather  than its essential format ion or 
prohibit ion.  
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